

CONTROLLIX CORPORATION

Without capacitors, the voltage drop across a system is calculated as:

$$Vd = \frac{kVA}{10(kV)^2} (R\cos\theta + X\sin\theta)$$

or

$$\% V_{d} = (\% R \cos \theta + \% X \sin \theta) kVA_{pn}$$

$$V_{d} = voltage drop across system leading to the load$$

$$kVA = 3-phase load kVA$$

$$kV = phase to phase voltage at load$$

$$cos theta = cosine of the power factor angle$$

$$R = resistance of system leading up to the load (ohms)$$

$$X = inductive reactance of the system leading up to the load (ohms)$$

The percent voltage rises at a load due to the addition of a capacitor bank is:

Vr =	% voltage rise at load			
kVAR =	3-phase capacitive kilovar			
kV =	phase to phase kilovolts			
X =	inductive reactance of the system			
KVA _{sc} =	3-phase short circuit kVA			

CONTROLLIX CORPORATION

The percent voltage rises from primary to secondary of a transformer is:

$$V_r = \frac{(kVAr)}{kVA_t}$$

Where:

Vr =	the percen	t voltage rises	at the	transformer
------	------------	-----------------	--------	-------------

- kVAR = 3-phase kilovar applied
- $kVA_t =$ 3-phase kVA of the transformer
- X_t = transformer reactance in percent